Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential
نویسندگان
چکیده
Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms-the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs.
منابع مشابه
Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil
Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (CO...
متن کاملStructure and Activity of Denitrifier Communi- ties in Biochar-Amended Soil and Their Impact on N2O Emissions
Nitrous oxide is a greenhouse gas with a global warming potential about 300 times higher than CO2. The main sources of N2O are microbial-mediated nitrogen transformation reactions in soils. Denitrification represents one of the major N2Oproducing pathways in oxygen-limited zones. Soil biochar amendment has been demonstrated to reduce N2O emissions in microcosms and in the field. Although N2O em...
متن کاملCharacteristics of Biochar-Amended Soil Cover for Landfill Gas Mitigation
In this study, biochar-amended soil cover was investigated to enhance reduction of CH4 emissions from landfills. This paper presents physical and chemical characteristics of biochar-amended soils. Specifically, moisture content, organic content, ash content, pH, particle size distribution, Atterberg limits, specific gravity, and permeability tests were conducted with biochar alone, soil alone, ...
متن کاملBiochar Properties Influencing Greenhouse Gas Emissions in Tropical Soils Differing in Texture and Mineralogy.
The ability of biochar applications to alter greenhouse gases (GHGs) (CO, CH, and NO) has been attracting research interest. However, inconsistent published results necessitate further exploration of potential influencing factors, including biochar properties, biochar rates, soil textures and mineralogy, and their interactions. Two short-term laboratory incubations were conducted to evaluate th...
متن کاملImpact of Biochar Formulation on the Release of Particulate Matter and on Short-Term Agronomic Performance
When applied in agriculture, the solid carbonaceous residue of anoxic thermochemical conversion of biomass (biochar) has variable effects on soil, crop yields, and climate mitigation. Biochar can be added to soil as powder or as pellets. While powdered forms have demonstrated effects on crop yields, they may release coarse and fine particulate that can be transported into the atmosphere during ...
متن کامل